If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6m^2-9=0
a = 6; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·6·(-9)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{6}}{2*6}=\frac{0-6\sqrt{6}}{12} =-\frac{6\sqrt{6}}{12} =-\frac{\sqrt{6}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{6}}{2*6}=\frac{0+6\sqrt{6}}{12} =\frac{6\sqrt{6}}{12} =\frac{\sqrt{6}}{2} $
| 3(8+1.5y)-y=2 | | (x+11)^(2)+5=5 | | 180+3y=360 | | 24=30-2/3)x | | 50+4z=180 | | 7^3x=50 | | 62=-10+9x | | 5x=5(8-x) | | (x+7)^2=25 | | x^2+25x-216=0 | | 36x^2+-25=0 | | 12+a/4=23 | | 9x+8x=150-14 | | 2/3=4/5r | | 0.03x/9=0.07/9 | | 0.03x+0.02(x+2000)=-50 | | -q^2-7q+18=0 | | 5/6t=25 | | 4n^2-48=4n | | 25/o=25 | | (x-1)^2-19=81 | | 4/5b=64 | | -7=11/17/z | | 3x+29+2x+41=180 | | x^2+2x+2018=0 | | 7x-5)^(2)=-2 | | (x+2)3x=5 | | 5/7f=15 | | -6+12+12-24x=-36 | | 3/2=(1.07)^x | | 25x2-1.44x+0.0064=0 | | 12(6x-12)=-21 |